Corso di aggiornamento professionale

Vulnerabilità Sismica ed Adeguamento di Costruzioni Esistenti in Calcestruzzo Armato

7 maggio – 7 giugno 2013

Aula Magna Seminario Vescovile Via Puccini, 36 - Pistoia

Valutazione e riduzione della vulnerabilità degli elementi strutturali, non strutturali ed impianti.

- La conoscenza del manufatto. Indagini in situ distruttive e non distruttive.
- La valutazione della capacità degli elementi strutturali di calcestruzzo armato.
- Il ruolo del confinamento del calcestruzzo e la verifica della duttilità.
- Esempi applicativi: edificio multipiano di calcestruzzo armato ed edificio prefabbricato.

Rosario Gigliotti

rosario.gigliotti@uniroma1.it

PARTE VI

Il ruolo del confinamento del calcestruzzo e la verifica della duttilità

CONFINAMENTO DEL CALCESTRUZZO

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Quando un **cls non confinato** è soggetto a tensioni di compressione vicine ai valori di rottura, si sviluppano elevate deformazioni laterali di trazione come risultato della formazione e propagazione di microfessure longitudinali.

Staffe e ferri longitudinali contengono l'espansione laterale applicando pressioni radiali al cls., ossia confinandolo

Provino di cls confinato con staffe d'acciaio soggetto a compressione centrata

Il cls confinato è soggetto ad uno stato di tensione pluri-assiale.

DOMINI DI ROTTURA

Ordine degli ingegneri – Pistoia

CALCESTRUZZO CONFINATO

Compressione triassiale ottenuta rivestendo il cls. di un provino cilindrico con una membrana di gomma ed immergendolo in acqua in pressione <u>La duttilità del cls. cresce al crescere del suo confinamento</u>

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

CALCESTRUZZO CONFINATO

Sapienza

Università di Roma

Compressione triassiale ottenuta staffando il cls. di un provino cilindrico con staffe disposte a passo decrescente

La duttilità del cls. cresce al crescere del suo confinamento

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

CALCESTRUZZO CONFINATO

Fig. 2.13 Axial load-strain curves for $4\frac{1}{2}$ in (108 mm) square concrete prisms with various contents of square tics 2,17

Compressione triassiale ottenuta staffando il cls. di un provino prismatico con staffe disposte a passo decrescente

La duttilità del cls. cresce al crescere del suo confinamento

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Domini di rottura

CRITERIO DI ROTTURA DI KUPFER

Attraverso studi sperimentali, Kupfer, Hilsdorf e Rusch nel 1966 ricavarono un criterio di rottura generalizzato del calcestruzzo.

- **K.-H.-R.** sottoposero provini prismatici (20 x 20 x 5 cm) a differenti combinazioni di tensioni biassiali nelle regioni:
- compressione biassiale,
- compressione trazione,
- trazione biassiale.
- Utilizzati Cls. con resistenze a compressione uniassiale di **190, 315, 590** kg/cm².

All'interno di ogni regione furono scelti quattro differenti rapporti s_1/s_2 , testando sei provini per ciascuna variabile.

Domini di rottura del calcestruzzo

Domini di rottura del calcestruzzo DOMINIO DI ROTTURA DI OTTOSEN

Rappresentazione tramite meridiani e paralleli

Meridiani significativi

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Domini di rottura del calcestruzzo

DI OTTOSEN ROTTURA Ц **OINIMOD**

Vista 3D

Domini di rottura del calcestruzzo

Effetto delle staffe

Staffe a spirale o circolari: sono messe in tensione dalla pressione esercitata dal calcestruzzo così da garantire una pressione di confinamento uniforme lungo tutta la circonferenza.

Staffe rettangolari: il pieno confinamento si ha negli angoli perché la pressione del calcestruzzo sui lati della staffa fa inflettere i bracci della staffa verso l'esterno. L'utilizzo di spille ed una buona distribuzione di ferri longitudinali incrementano il confinamento.

Pressione di confinamento

Distribuzione delle pressioni di confinamento all'interno della sezione

La media delle pressioni lungo le circonferenze interne alla sezione quadrata è costante.

Pressione di confinamento

Distribuzione delle pressioni di confinamento lungo l'elemento strutturale.

Un elemento strutturale in c.a. è confinato, oltre che dalle armature trasversali, anche dalle barre longitudinali che contribuiscono a distribuire lungo l'elemento le pressioni di confinamento esercitate dalle staffe.

Le pressioni esercitate dalle staffe lungo il perimetro si diffondono nel calcestruzzo secondo due meccanismi:

1. l'effetto arco

2. l'effetto della rigidezza flessionale delle barre longitudinali.

Rosario Gigliotti

Pressione di confinamento

Il confinamento è tanto migliore quanto minore è il passo delle staffe.

Le limitazioni sul passo derivano anche dalla necessità di impedire l'instabilità delle barre longitudinali (in base a risultati sperimentali <u>il passo non deve</u> eccedere 6 volte il diametro delle armature longitudinali).

Esistono diverse espressioni (tutte di natura empirica) che descrivono il legame costitutivo del calcestruzzo confinato.

Ai fini della progettazione tali espressioni devono sempre fornire:

- la resistenza a compressione
- Ia deformazione ultima a compressione
- i parametri equivalenti dello stress-block.

Pressione di confinamento

La pressione di confinamento massima (f'_{l}) si ha quando le staffe raggiungono la tensione di snervamento (f_{vh}) .

$$f_{lx}' = \rho_x f_{yh}$$
$$f_{ly}' = \rho_y f_{yh}$$

 ρ_x e ρ_y sono le % volumetriche di armatura di confinamento sull'area di cls tagliata da piani perpendicolari, rispettivamente, alle 2 direzioni.

rettangolare

Sezione

Pressione effettiva di confinamento

$$f'_{l} = K_{e}f_{l}$$

 K_e è un coefficiente di confinamento legato al rapporto tra l'area minima di calcestruzzo confinato e l'area effettiva racchiusa dall'asse della staffa.

0.95 sezioni circolari

 $K_e = 0.75$ sezioni rettangolari tipopilastro 0.60 sezioni rettangolari tipoparete

Modello di Mander, Priestley, Park (1988)

Tensione di picco

Relazione tra resistenza confinata (f'_{cc}) e resistenza non confinata (f'_{c})

$$K = \frac{f'_{cc}}{f'_{c}} = \left(-1.254 + 2.254\sqrt{1 + \frac{7.94f'_{l}}{f'_{c}}} - 2\frac{f'_{l}}{f'_{c}}\right)$$

Mander, J. B., Priestley, M. J. N., and Park, R., "Observed Stress-Strain Behaviour of Confined Concrete," *Journal of Structural Engineering*, *ASCE*, Vol. 114, No. 8, August 1988, pp. 1827–1849.

Valida per sezioni circolari e sezioni rettangolari con la stessa tensione effettiva di confinamento (f'₁) nelle due direzioni.

Nel caso di pressioni di confinamento diverse si può ricorrere ad un istogramma.

Modello di Mander, Priestley, Park (1988)

Tensione di picco

Dividendo la tensione di confinamento f'_{lx} per la tensione di schiacciamento del cls., si passa dalla percentuale volumetrica di confinamento alla percentuale meccanica di confinamento

$$\frac{f_{lx,y}}{f_c^{'}} = \frac{2f_{yh}A_{spx,y}}{f_c^{'}d_s s_h}$$

Determinazione della resistenza a compressione del calcestruzzo confinato in funzione delle pressioni laterali di confinamento (sezioni rettangolari).

Modello di Mander, Priestley, Park (1988)

Deformazione di picco e deformazione ultima

Un'espressione valida per il valore della **deformazione corrispondente alla tensione di picco**, \mathcal{E}_{cc} , è la seguente:

$$\varepsilon_{cc} = 0.002 \left[1 + 5 \left(\frac{f'_{cc}}{f'_{c}} - 1 \right) \right]$$

Si noti che si parte sempre da 0,002

Una stima conservativa della **deformazione ultima a compressione** \mathcal{E}_{cu} è la seguente:

$$\varepsilon_{cu} = 0.004 + 1.4 \frac{\rho_s f_{yh} \varepsilon_{sm}}{f'_{cc}} \approx 0.012 \div 0.05$$

Priestley et al.

- percentuale volumetrica di confinamento
 - deformazione dell'acciaio in corrispondenza della tensione massima (**≈0.15**)

 ρ_{s}

 \mathcal{E}_{sm}

Modelli analitici calcestruzzo confinato

-KENT, PARK (1971)

SCUOLA NEO ZELANDESE

Il confinamento esercitato dalle staffe si attiva solo in prossimità della resistenza a compressione uniassiale.

L'area confinata è da considerarsi solo quella interna al perimetro esterno delle staffe

CONFINAMENTO TRASCURABILE RAMO PRE PICCO (a favore di sicurezza)
→ DIMINUZIONE PENDENZA RAMO POST PICCO

Modelli analitici calcestruzzo confinato

-KENT, PARK (1971)

SCUOLA NEO ZELANDESE

Modelli analitici calcestruzzo confinato

SCUOLA NEO ZELANDESE

-KENT, PARK (1971)

-PRIESTLEY, PARK (1981)

Il confinamento esercitato dalle staffe non produce più esclusivamente una diminuzione della pendenza nel ramo di post picco, ma genera anche benefici in termini di aumento della resistenza a compressione e di corrispondente deformazione al picco $\left[\varepsilon_{cc} = 0.002 \left(1 + \frac{\rho_s f_{yh}}{f_c}\right)\right]$

$$f'_{cc} = f'_{c} + 4.1 f_{l} = f'_{c} \left(1.000 + 4.1 \frac{f_{l}}{f'_{c}} \right)$$

 $f_l = \frac{2f_{yh}A_{sp}}{d_s s_h}$

pressione di confinamento

rapporto di confinamento

$$f'_{cc} = f'_{c} + \frac{8.2f_{yh}A_{sp}}{d_{s}s_{h}} = f'_{c} \left(1 + 2.05\rho_{s}\frac{f_{yh}}{f'_{c}}\right)$$

 f'_c = resistenza a compressione del cls non confinato;

 f'_{cc} = resistenza a compressione del cls confinato.

Modelli analitici calcestruzzo confinato

-KENT, PARK (1971) SCUOLA NEOZELANDESE $f_{ck,c} = f_{ck} = 35MPa$

-**PRIESTLEY, PARK (1981)** $f_{ck,c} = 50.09 MPa$

-SCOTT, PARK , PRIESTLEY (1982) $f_{ck,c} = 42.36 \div 52.95 MPa$

Modelli analitici calcestruzzo confinato

SCUOLA NEO ZELANDESE

Cover

Rosario Gigliotti

concrete

A

Confinamento del calcestruzzo

Modelli analitici calcestruzzo confinato

-KENT, PARK (1971)

-PRIESTLEY, PARK (1981)

as

-SCOTT, PARK, PRIESTLEY (1982) -MANDER, PARK, PRIESTLEY (1988)

SCUOLA NEO ZELANDESE

In una prova di compressione, il calcestruzzo esterno è non confinato e diventa non resistente una volta raggiunta la resistenza a compressione, ma il nucleo di calcestruzzo continua a portare il carico ad alte deformazioni.

Viene proposta una unica legge per il ramo di pre e post picco

$$x = \frac{\varepsilon_c}{\varepsilon_{cc}} \qquad \varepsilon_{cc} = \varepsilon_{c0} \left[1 + 5 \left(\frac{f'_{cc}}{f'_{c0}} - 1 \right) \right] \quad \varepsilon_{c0} = 0.002$$

$$r = \frac{E_c}{E_c - E_{sec}} \qquad E_c = 5,000\sqrt{f'_{c0}} \qquad E_{sec} = \frac{f'_{cc}}{\varepsilon_{cc}}$$

$$f'_l = \frac{1}{2}k_e\rho_s f_{yh} \quad k_e = \frac{\left(1 - \frac{s'}{2d_s}\right)^2}{1 - \rho_{cc}} \qquad \rho_s = \frac{A_{sp}\pi d_s}{\frac{\pi}{4}d_s^2 s} = \frac{4A_{sp}}{d_s s}$$

$$f'_{cc} = f'_{c0} \left(-1.254 + 2.254\sqrt{1 + \frac{7.94f'_l}{f'_{co}} - 2\frac{f'_l}{f'_{co}}}\right)$$

Effectively confined core SECTION B-BCover concrete (spalls off) Ineffectively confined core B $d_{5}-s'/2$ d_{5} SECTION A-A

 $f_c = \frac{f'_{cc} xr}{r - 1 + x^r}$

Modelli analitici calcestruzzo confinato

- -KENT, PARK (1971)
- -PRIESTLEY, PARK (1981)
- -SCOTT, PARK, PRIESTLEY (1982)
- -MANDER, PARK, PRIESTLEY (1988)

EFFETTI DELLO STRAIN RATE

Valutati attraverso l'utilizzo di coefficienti di amplificazione dinamica, che sono funzione della velocità di deformazione, da applicare a

- Tensione al picco
- Deformazione al picco
- Modulo di Elasticità iniziale

SCUOLA NEO ZELANDESE

SCUOLA

Modelli analitici

Confined and Unconfined Concrete, Mander ed al.

CLS. CONFINATO: MODELLI CONF. PASSIVO

SCUOLA NEO ZELANDESE

Compressione triassiale (Richart et al.)

Calcestruzzo confinato da armature trasversali

Confinamento AttivoConfinamento PassivoIpotesi semplificative (adottate dai più comuni modelli analitici)

- Distribuzione delle pressioni di confinamento all'interno della sezione per mezzo dell'"effetto arco".
- Armatura trasversale soggetta ad uno stato di tensione assiale.
- Pressioni di confinamento uniformi all'interno del nucleo confinato.
- Tensione nell'acciaio costante, con valore pari alla tensione di snervamento.

Modelli tradizionali

Equilibrio: Free Body Diagram Mander, Priestley, Park (1988)

 $2A_{s}f_{s} \\$ 2A_sf $f_r' = k_e f_r$ $k_e = k_e$ ♦ A_sf_s $A_{s}f_{s}$ Area effettivamente confinata Tie level Effectively Confined Concrete

Rosario Gigliotti

Sovrapposizione degli effetti $f_{cc} = f_{c0} + \Delta f_c$

 $\Delta f_c(\mathcal{E}_c)$ uniforme nella sezione

Nucleo di Calcestruzzo

0

 τ_{xv}

X

Analytical Stress–Strain Relationship for Concrete Confined by Steel Stirrups and/or FRP Jackets

Franco Braga, Rosario Gigliotti, Michelangelo Laterza

JOURNAL OF STRUCTURAL ENGINEERING © ASCE / SEPTEMBER 2006

Stato tensionale lungo il perimetro della staffa quadrata

Confinamento passivo

Confinamento passivo

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Confinamento del calcestruzzo

Effetto delle armature longitudinali

Modello di confinamento passivo

Conf. passivo vs conf. attivo

Confinamento passivo

Modello di confinamento passivo

Fig. 8. Different type of transverse reinforcement configurations (square and circular sections)

Fig. 12. Confining pressures due to internal and external hoops

Fig. 13. Different type of external jackets: (a) and (b) FRP; and (c)

Fig. 15. Example of passive and active stress-strain curves

Confinamento del calcestruzzo

Effetto delle armature longitudinali

Effetto delle armature longitudinali sulla resistenza e sulla duttilità

Ordine degli ingegneri – Pistoia

Confinamento con FRP

Fig. 24. Comparison of analytical predictions and experimental results: stress-strain curves (Columns C-2, C-11, C-13, and C-_{S-glass} by Karabinis and Rousakis 2002)

SEZIONI PRESSOINFLESSE IN C.A. Rigidezza, resistenza e duttilità

NTC – 4.1.2 VERIFICHE AGLI STATI LIMITE 4.1.2.1.2 Resistenza a sforzo normale e flessione (elementi monodimensionali)

4.1.2.1.2.1 Ipotesi di base

Senza escludere specifici approfondimenti, necessari in particolare nel caso di elementi costituiti da calcestruzzo di classe di resistenza superiore a C45/55, per la valutazione della resistenza ultima delle sezioni di elementi monodimensionali nei confronti di sforzo normale e flessione, si adotteranno le seguenti ipotesi:

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- resistenza a trazione del calcestruzzo nulla;
- rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;
- -deformazione iniziale dell'armatura di precompressione considerata nelle relazioni di congruenza della sezione.

NTC – 4.1.2 VERIFICHE AGLI STATI LIMITE 4.1.2.1.2 Resistenza a sforzo normale e flessione (elementi monodimensionali)

4.1.2.1.2.1 Diagrammi di calcolo tensione-deformazione del calcestruzzo

Per il diagramma tensionedeformazione del calcestruzzo è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, modelli definiti in base alla resistenza di calcolo f_{cd} ed alla deformazione ultima ε_{cu}

NTC – 4.1.2 VERIFICHE AGLI STATI LIMITE 4.1.2.1.2 Resistenza a sforzo normale e flessione (elementi monodimensionali)

4.1.2.1.2.1 Diagrammi di calcolo tensione-deformazione del calcestruzzo

NTC – 4.1.2 VERIFICHE AGLI STATI LIMITE 4.1.2.1 Verifiche agli stati limite ultimi

4.1.2.1.2.4 Analisi della sezione

Verifica di resistenza allo SLU

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

(4.1.9)

Stress Block

Al posto del diagramma effettivo del calcestruzzo è possibile utilizzare per l'analisi delle sezioni lo Stress-block. Esso rappresenta il diagramma rettangolare equivalente, descritto dai due parametri $\eta \in \lambda$. Tali parametri vengono calcolati imponendo l'uguaglianza tra le **aree** (equilibrio alla traslazione) ed i momenti statici (equilibrio alla rotazione) dei due diagrammi (effettivo e rettangolare equivalente):

$$\int_0^{\varepsilon_{cm}} \sigma_c d\varepsilon_c = \eta f_{cd} \cdot \lambda \varepsilon_{cm}$$

$$\int_{0}^{\varepsilon_{cm}} \sigma_{c} \varepsilon_{c} d\varepsilon_{c} = \eta f_{cd} \cdot \lambda \varepsilon_{cm} \cdot (1 - 0, 5\lambda)$$

Calcolo della sezione in c.a.

Sezione rettangolare: armature concentrate, armature distribuite

Calcolo della sezione in c.a.

Calcolo della sezione in c.a.

Stato Limite di Decompressione

Stato Limite di formazione delle fessure SLE-F

Dominio di interazione M-N

Stato Limite di limitazione delle tensioni

Dominio di interazione M-N

Stato Limite di prima plasticizzazione

Campi di deformazione

Stato Limite Ultimo

ESEMPIO: confinamento del calcestruzzo – STRESS BLOCK

ESEMPIO: Effetto del confinamento sulla resistenza della sezione in c.a.

ESEMPIO: Effetto del confinamento sulla duttilità della sezione in c.a.

Verifiche di duttilità nella proposta di revisione delle NTC 2008

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Cap.7 – Progettazione per Azioni Sismiche

§ 7.4.6.2 LIMITAZIONI DI ARMATURA

§ 7.4.6.2.2 Pilastri

[...] Dettagli costruttivi per la duttilità

Per le zone dissipative allo spiccato dei pilastri primari e per le zone terminali di tutti i pilastri secondari **devono essere eseguite le verifiche di duttilità indicate al § 7.4.4.2.2.** In alternativa, tali verifiche possono ritenersi soddisfatte se, per ciascuna zona dissipativa, si rispettano le limitazioni seguenti:

$$\alpha \cdot \omega_{wd} \ge 30\mu_{\phi} \cdot \nu_{d} \cdot \varepsilon_{sy,d} \cdot \frac{b_{c}}{b_{0}} - 0,035$$

 $\omega_{wd} = \frac{\text{volume delle staffe di confinamento}}{\text{volume del nucleo di calcestruzzo}} \cdot \frac{f_{yd}}{f_{cd}}$

Duttilità pilastri

Verifiche di duttilità

ID 4-b

ID 6

Rosario Gigliotti

Ordine degli ingegneri – Pistoia

Armatura trasversale per la duttilità

Armatura trasversale per la duttilità

Armatura trasversale per la duttilità

- 4.1.2.1.2.2 Diagrammi di calcolo tensione-deformazione del calcestruzzo
- Introduzione della relazione tensione deformazione del calcestruzzo confinato

(in accordo con la EN1992-1-1)

- 4.1.2.1.2.4 Analisi della sezione
- Pilastri soggetti a compressione assiale: modifica al valore dell'eccentricità minima
- Pressoflessione deviata: si introducono valori del coefficiente α da potersi assumere in mancanza di specifiche valutazioni (in accordo con la EN1992-1-1)
- Introduzione di un nuovo paragrafo in cui si riportano le verifiche di duttilità

4.1.2.3 STATI LIMITE ULTIMI

4.1.2.3.1 Generalità

Si deve verificare il rispetto dei seguenti stati limite:

- resistenza
- duttilità.

4.1.2.3.2 Stato limite di resistenza

Si deve verificare il rispetto dei seguenti stati limite:

- resistenza flessionale in presenza e in assenza di sforzo assiale,
- resistenza a taglio e punzonamento,
- resistenza a torsione,
- resistenza di elementi tozzi,
- resistenza a fatica,
- stabilita di elementi snelli.
- 4.1.2.3.3 Stato limite di duttilità

Si deve verificare, ove richiesto al § 7.4 delle presenti norme, il rispetto del seguente stato limite:

- duttilità flessionale in presenza e in assenza di sforzo assiale

[...]

Calcestruzzo confinato

Per il <u>diagramma tensione-deformazione del calcestruzzo confinato</u> è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale in stato triassiale. Questi modelli possono essere adottati nel calcolo sia della resistenza ultima sia della duttilità delle sezioni e devono essere applicati alle sole zone confinate della sezione.

Il confinamento del calcestruzzo è normalmente generato da staffe chiuse e legature interne, che possono raggiungere la tensione di snervamento a causa della dilatazione laterale del calcestruzzo stesso a cui tendono ad opporsi. Il confinamento consente al calcestruzzo di raggiungere tensioni e deformazioni più elevate di quelle proprie del calcestruzzo non confinato. Le altre caratteristiche meccaniche si possono considerare inalterate.

Calcestruzzo confinato

In assenza di più precise determinazioni basate su modelli analitici di comprovata validità, è possibile utilizzare la relazione tensione-deformazione rappresentata in Fig. 4.1.2 (dove le deformazioni di compressione sono assunte positive), in cui la resistenza caratteristica e le deformazioni del calcestruzzo confinato sono valutate secondo le relazioni seguenti:

$$f_{ck,c} = f_{ck} \cdot (1,0+5,0\cdot\sigma_2/f_{ck}) \text{ per } \sigma_2 \le 0,05f_{ck}$$
 [4.1.8]

$$f_{ck,c} = f_{ck} \cdot (1,125+2,5 \cdot \sigma_2/f_{ck}) \text{ per } \sigma_2 > 0,05f_{ck}$$
 [4.1.9]

$$\varepsilon_{c2,c} = \varepsilon_{c2} \cdot \left(f_{ck,c} / f_{ck} \right)^2$$
[4.1.10]

$$\varepsilon_{cu2,c} = \varepsilon_{cu} + 0, 2 \cdot \sigma_2 / f_{ck}$$
[4.1.11]

$$f_{cd,c} = \alpha_{cc} \cdot f_{ck,c} / \gamma_c$$
 [4.1.12]

Fig. 4.1.2 – Modelli σ-ε per il calcestruzzo confinato

Pressione laterali di confinamento (free body diagram)

Confinamento con pressioni biassiali

Mander et al. (1988) da William e Warnke (1975)

75

Confinamento del calcestruzzo

Pressione laterale di confinamento

 $\sigma_l = \beta \cdot \sigma_{l,\max}$

 $\beta = -(1, 21\lambda + 0, 18) \cdot \eta^2 + (1, 7\lambda + 0, 8) \cdot \eta - 0, 49\lambda + 0, 32$ $\beta = -0, 4\eta^2 + 1, 2\eta + 0, 2$

Pressione laterale equivalente

Confronto tra le regressioni sulle superfici di William-Warnke (Mander) e l'equazione riportata in EC8-2 Annex E

Coefficiente di efficienza del confinamento EC8 - 5.4.3.2.2

Detailing of primary seismic columns for local ductility

- a) For rectangular cross-sections:
- $\alpha_{\rm n} = 1 \sum_{\rm n} b_{\rm i}^2 / 6b_{\rm o}h_{\rm o}$ (5.16a)
- $\alpha_{s} = (1 s / 2b_{o})(1 s / 2h_{o})$ (5.17a)

b) For circular cross-sections with hoops and diameter of confined core D_0 (to the centreline of hoops):

$$\alpha_n = 1$$

 $\alpha_{\rm s} = \left(1 - s / 2D_{\rm o}\right)^2$

c) For circular cross-sections with spiral reinforcement:

 $\alpha_n = 1$

 $\alpha_{\rm s} = \left(1 - s / 2D_{\rm o}\right)$

Rosario Gigliotti

4.1.2.3.4.2 Verifiche di resistenza e duttilità

Con riferimento alla sezione pressoinflessa, rappresentata in Fig. 4.1.4, la capacità, in termini di resistenza e duttilità, si determina in base alle ipotesi di calcolo e ai modelli σ - ϵ di cui al § 4.1.2.1.2.

Fig. 4.1.4 – Sezione pressoinflessa (equilibrio delle forze interne corrispondenti al raggiungimento della deformazione ultima nel calcestruzzo)

4.1.2.3.4.2 Verifiche di resistenza e duttilità

Le verifiche si eseguono confrontando la capacità, espressa in termini di resistenza e, quando richiesto al § 7.4 delle presenti norme, di duttilità, con la corrispondente domanda, secondo le relazioni:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$
[4.1.18a]
$$\mu_{d} = \mu_{d} (N_{Ed}) \ge \mu_{Ed}$$
[4.1.18b]

dove:

- M_{Rd} è il valore di progetto del momento resistente corrispondente a NEd;
- N_{Ed} è il valore di progetto dello sforzo normale sollecitante;
- M_{Ed} è il valore di progetto del momento di domanda;
- m_d è il valore di progetto della duttilità di curvatura corrispondente a NEd;
- m_{Ed} è la domanda in termini di duttilità di curvatura.

4.1.2.3.4.2 Verifiche di resistenza e duttilità

La capacità in termini di **fattore di duttilità in curvatura** μ_{ϕ} può essere calcolata, separatamente per le due direzioni principali di verifica, come rapporto tra la curvatura cui corrisponde una riduzione del 15% della massima resistenza a flessione – oppure il raggiungimento della deformazione ultima del calcestruzzo e/o dell'acciaio – e la **curvatura convenzionale di prima plasticizzazione** espressa dalla relazione seguente:

$$\phi_{yd} = \frac{M_{Rd}}{M'_{yd}} \cdot \phi'_{yd}$$

 ϕ'_{yd} è la minore tra la curvatura calcolata in corrispondenza dello snervamento dell'armatura tesa e la curvatura calcolata in corrispondenza della deformazione di picco (0,20%) del calcestruzzo compresso;

M_{Rd} è il momento resistente della sezione allo SLU;

 M'_{yd} è il momento corrispondente a ϕ'_{yd} e può essere assunto come momento resistente massimo della sezione in campo sostanzialmente elastico.

 $\mu_{\phi} = \frac{\phi_{u}}{\phi_{u}}$

DUTTILITÀ DI CURVATURA

- ϕ_{vd} curvatura convenzionale di prima plasticizzazione
- ϕ_u curvatura ultima

SEZIONE STUDIO

Dimensioni:

Altezza: h = 700 mmBase: b = 400 mm

Armatura Longitudinale:

Copriferro: c = 35 mmDiametro ferri: $\phi = 20 \text{ mm}$

Armatura Trasversale:

Diametro staffe: $\phi = 8 \text{ mm}$ Diametro legature: $\phi = 8 \text{ mm}$ Passo: s = 10 cm

Materiali:

Calcestruzzo: $R_{ck} = 30 \text{ N/mm}^2$ Acciaio: B450C $f_{yk} = 450 \text{ N/mm}^2$

Verifiche di duttilità: esempi

Esempio: legami costitutivi

Calcestruzzo copriferro:

- NTC 2008 mod. (a)

Calcestruzzo nucleo:

- NTC 2008 mod. (a)
- rev. NTC08 EC2 confinato
- CLS confinato con "softening" (Braga-Gigliotti-Laterza)

Acciaio:

- NTC 2008 mod. (b)

Domini di interazione M_x- N per diversi stati limite

Domini di interazione (Momenti e curvature)

Domini di interazione M₁ – M₂

Domini di interazione $\chi_1 - \chi_2$

ν= **0,3**

 $N/(Af_{cd}) = 0,15$ χ_v = 0,0068 χ_u = 0,0207 μ = 3,02 Diagramma Momento-Curvatura 700 SLV bilineare NZS 600 LTcls O - SL85% 500 **SLP**last **E** 400 **E N N** 300 LTac 200 100 **SLFess** SLDec 0 0000000 0.005 0.010 0.015 0.020 0.025 0.030 χ [rad/m]

N/(Af_{cd}) = 0,3 χ_y = 0,0071 χ_u = 0,0155 μ =2,18

N/(Af_{cd}) = 0,45 $\chi_v = 0,0070$ $\chi_u = 0,0123$ $\mu = 1,76$

Diagrammi Momento-Curvatura: effetto del carico assiale

Duttilità: effetto del carico assiale

Domini di interazione M_x- N

N/(Af_{cd}) = 0,15 $\chi_v = 0,0069$ $\chi_u = 0,0893$ $\mu = 12,89$

 $N/(Af_{cd}) = 0,3$

 $\chi_v = 0,0073$ $\chi_u = 0,0733$ $\mu = 10,06$

 $N/(Af_{cd}) = 0,45$

χ_u = 0,0581

μ =7,92

Effetto del carico assiale

Relazione duttilità – carico assiale

Analisi della sezione: esempi

Domini di interazione (cls conf. "reale")

Domini di interazione M_x- N

Legame cls nucleo confinato: Braga-Gigliotti-Laterza

 $N/(Af_{cd}) = 0,15$

χ_u = 0,0824

 $N/(Af_{cd}) = 0,30$

 $N/(Af_{cd}) = 0,45$

Effetto del carico assiale

Analisi della sezione: esempi

Relazione duttilità – carico assiale (cls conf. "reale")

Effetto del legame σ_c - ϵ_c sul Momento-curvatura

v=0,15

Effetto del legame σ_c - ϵ_c sul Momento-curvatura

ν=0,3

Effetto del legame σ_c - ϵ_c sul Momento-curvatura

v=0,45

Effetto del legame $\sigma_{\text{c}}\text{-}\epsilon_{\text{c}}$ sul Momento-curvatura

