Odine degli Ingegneri della Provincia di Pistoia Corso sulla Vulnerabilità Sismica

Modelli evolutivi per la verifica del rischio di edifici esistenti

Quaderno 3 Esempi applicativi

Prof. Enrico Spacone

Dipartimento di Ingegneria e Geologia Università degli Studi "G. D'Annunzio" Chieti-Pescara

31 Maggio 2012

- Edificio di Bonefro
- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Edificio di Bonefro

- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Edificio danneggiato dal sisma del Molise 2002

Pianta primo impalcato

Pianta piano tipo

Pianta sottotetto

Piani 1-2-3			
Peso Proprio soletta	2.82 KN/m ²		
Carichi Permanenti	2.80 KN/m ²		
Carichi Variabili	2.00 KN/m ² 4.00 KN/m ² (balcone)		

Piano 4 (sottotetto)			
Peso Proprio soletta	2.82 KN/m ²		
Carichi Permanenti	0.3 KN/m ²		
Carichi Variabili	2.00 KN/m ² 4.00 KN/m ² (balcone)		

Copertura		
Peso Proprio soletta	3.25 KN/m ²	
Carichi Permanenti	2.07 KN/m ²	

$\sum G_{k,j} + \sum \Psi_{Ej} Q_{Kj}$	
$\Psi_{\underline{\text{Ei}}}$ = coeff. di combinazione dell'azione	<u>e variabile (EC8)</u>
$\Psi_{Ej} = \varphi \cdot \Psi_{2j} \left(SLU \right)$	
	Ψ_{2i}
abitazioni, uffici	0.30
Tetti e coperture con neve	0.20

Carichi indipendenti	φ	
Ultimo piano	1.00	
Altri piani	0.50	

	M = W/g (t)
Piano 1	164
Piano 2	175
Piano 3	175
Piano 4	107
Copertura	69

Le masse di piano vengono ripartite ai nodi

(diaframma infinitamente rigido)

N.B. non e' stato incluso il carico neve

EDIFICIO DI BONEFRO: SOLAIO "RIGIDO" SENZA TAMPONEMENTI E SCALE (El intero)

Modo	Periodo	UX	UY	RZ	SumUX	SumUY	SumRZ
	(Sec)						
1	0,902	0,00000	0,83935	0,00000	0,00000	0,83935	0,00000
2	0,685	0,27868	0,00000	0,57195	0,27868	0,83935	0,57195
3	0,642	0,57923	0,00000	0,29194	0,85791	0,83935	0,86389
4	0,299	0,00000	0,09731	0,00000	0,85791	0,93666	0,86389
5	0,228	0,04963	0,00000	0,05925	0,90753	0,93666	0,92314
6	0,214	0,05334	0,00000	0,03701	0,96087	0,93666	0,96015
7	0,176	0,00000	0,03990	0,00000	0,96087	0,97656	0,96015
8	0,139	0,01032	0,00000	0,02018	0,97119	0,97656	0,98033
9	0,134	0,01947	0,00000	0,00762	0,99066	0,97656	0,98795
10	0,119	0,00000	0,02071	0,00000	0,99066	0,99727	0,98795
11	0,108	1.86E-02	0,00000	0,01169	0,99068	0,99727	0,99964
12	0,106	0,00932	0,00000	3.18E-02	100,000	0,99727	0,99967

E' FORTEMENTE CONSIGLIABILE FARE UN'ANALISI MODALE PRIMA DI UNA 11 **QUALUNQUE ANALISI NONLINEARE**

Modo	T (sec)	UX	UY
1	0,902	0,00000	0,83935

Modo	T (sec)	UX	UY
2	0,685	0,27868	0,00000

Modo	T (sec)	UX	UY
3	0,642	0,57923	0,00000

Modo	T (sec)	UX	UY
4	0,299	0,00000	0,09731

Modo	T (sec)	UX	UY
5	0,228	0,04963	0,00000

Modo	T (sec)	UX	UY
6	0,214	0,05334	0,00000

Modo	T (sec)	UX	UY
7	0,176	0,00000	0,03990

Modo	T (sec)	UX	UY
8	0,139	0,01032	0,00000

Modo	T (sec)	UX	UY
9	0,134	0,01947	0,00000

ANALISI MODALE 2 EDIFICIO DI BONEFRO: SOLAIO NON "RIGIDO" SENZA TAMPONEMENTI E SCALE (El intero)

- a) costruire il modello è la parte più importante ed impegnativa
- b) un elemento "frame" in forza/trave o pilastro
- c) elemento "frame" a plasticità distribuita
- d) punti di integrazione (sezioni) a fibre
- e) leggi costitutive materiali
- f) stesso modello sia per pushover che per TH
- g) diaframma di piano rigido
- h) masse distribuite
- i) scala al momento non inclusa

- 1) Elementi in forze
 - 5 punti di Integrazione di Gauss-Lobatto
 Sezioni a fibre

Cls del nucleo: modello di confinamento di Kent-Scott-Park

#	\$fpc \$epsc0 \$fpcu \$epscu
uniaxialMaterial Concrete01 1	-30 -0.002 -6 -0.01
uniaxialMaterial Concrete01 2	-25 -0.002 0 -0.005
# tag fy	E0 b
uniaxialMaterial Steel01 3 34	40 210000 0.01

Orientamento elementi

APPLICAZIONE DEI CARICHI NON SISMICI

$$G_{k} + P_{k} + \sum_{i} (\psi_{2i} Q_{ki})$$

$$\underline{i} \quad \underbrace{i} \quad \underbrace{j} \quad \underbrace{$$

Travi: carichi verticali uniformemente distribuiti

L'applicazione dei carichi gravitazionali cambia le caratteristiche della struttura, in particolare le travi si fessurano. A questo punto si consiglia un'analisi modale (confrontare con analisi modale su modello elastico)

APPLICAZIONE DEI CARICHI NON SISMICI

Periodi modali prima e dopo l'applicazione dei carichi gravitazionali

Mode	T _{in} (sec)	T _{fin} (sec)	ΔΤ
1	0,765	0,872	14%
2	0,630	0,668	6%
3	0,527	0,557	6%
4	0,249	0,282	13%
5	0,183	0,190	4%
6	0,146	0,161	10%
7	0,143	0,148	3%
8	0,109	0,114	5%
9	0,099	0,102	3%
10	0,078	0,080	2%
11	0,072	0,074	2%
12	0,058	0,059	2%

ANALISI TIME HISTORY EDIFICIO DI BONEFRO

10 accelerogrammi generati con SIMQKE (pesante x la struttura, ok perché stiamo testando il metodo): discussione ancora aperta su come generare terremoti

ANALISI TIME HISTORY

Discussione ancora aperta su quali accelerogrammi usare:

- Naturali, Artificiali, Generati?
- Ma sono veramente naturali, free-field?
- Come sceglierli
- I programmi disponibili generano accelerogrammi realistici?
- Fra poco saranno disponibili in Italia un database di accelerogrammi naturali e delle linee guide per la generazione di accelerogrammi (www.reluis.unina.it)
- Al momento alcuni "esperti" consigliano accelerogrammi generati per testare i metodi (ricerca) mentre per la verifica di edifici consigliano terremoti naturali (meno gravosi sulla struttura)

Smorzamento viscoso 3% nei modi 1 e 6 (ragionevole?)

ANALISI TIME HISTORY

Telaio con tamponamenti Singolo terremoto

Non vi è spostamento residuo nonostante la plasticizzazione delle colonne a piano terra. Dipende dai materiali usati!

PUSHOVER E TIME HISTORY

Telaio con tamponamenti

Periodi modali prima e dopo l'applicazione dei carichi gravitazionali

Mode	T _{in} (sec)	T _{fin} (sec)	ΔΤ
1	0,765	0,872	14%
2	0,630	0,668	6%
3	0,527	0,557	6%
4	0,249	0,282	13%
5	0,183	0,190	4%
6	0,146	0,161	10%
7	0,143	0,148	3%
8	0,109	0,114	5%
9	0,099	0,102	3%
10	0,078	0,080	2%
11	0,072	0,074	2%
12	0,058	0,059	2%

PUSHOVER E TIME HISTORY

Telaio senza tamponamenti

 $\underline{\mathbf{Z}}$

X

У

Periodi modali prima e dopo l'applicazio dei carichi gravitazionali: manca la scala

Modo	T _{in} (sec)	T _{fin} (sec)	ΔΤ
1	1,002	1,185	18%
2	0,818	0,950	16%
3	0,817	0,851	4%
4	0,316	0,369	17%
5	0,265	0,303	14%
6	0,245	0,276	12%
7	0,171	0,190	12%
8	0,153	0,173	13%
9	0,145	0,159	10%
10	0,116	0,122	6%
11	0,111	0,119	7%
12	0,109	0,114	5%

BREAKDOWN DELLE COMPONENTI STRUTTURALI

Sistema strutturale completo

Edificio esistente Modello a fibre Direzione Y

Breakdown delle componenti strutturali – singoli contributi

M. Faggella, E. Spacone, J.P. Conte, J. Restrepo 13ECEE, Ginevra 2006

BREAKDOWN DELLE COMPONENTI STRUTTURALI

Edificio esistente Modello a fibre Direzione Y

Edificio esistente Modello a fibre Direzione Y

Edificio esistente Modello a fibre Direzione Y

Risultati dei diversi metodi di analisi nonlineare (TH, PO, MPA):

- Alta flessibilità della struttura in esame.
- PO Modo1 e media TH in accordo sugli spostamenti massimi.
- PO Modo1 e media TH in disaccordo sui max drift (specie ai piani alti).
- MPA con combinazione SRSS non migliora la corrispondenza con la media TH.
- Il grado di nonlinearità della risposta determina dispersione dei risultati delle singole TH.
- Telaio nudo: max spostamenti e drift, minimo taglio di base alla massima richiesta PO.

Edificio esistente Modello a fibre Direzione Y

Edificio esistente Modello a fibre Direzione Y

Risultati dei diversi metodi di analisi nonlineare (TH, PO, MPA):

- L'aggiunta della rigidezza flessionale dei solai riduce spostamenti complessivi e drift
- La maggiore rigidezza iniziale ottenuta sembra produrre un comportamento generalmente piu duttile.
- L'aggiunta di elementi resistenti a flessione scarica le travi, e favorisce ancor più il meccanismo a colonne plasticizzate
- MPA con combinazione SRSS non migliora la corrispondenza con la media TH.
- Il grado di nonlinearità della risposta determina dispersione dei risultati delle singole TH.

Edificio esistente Modello a fibre Direzione Y

Edificio esistente Modello a fibre Direzione Y

+ Tamponature

Risultati dei diversi metodi di analisi nonlineare (TH, PO, MPA):

- Tamponature elastiche: elevato abbattimento della risposta in spostamenti e drift.
- Bassa partecipazione modi superiori → TH e PO dovrebbero coincidere, ... ma ...
- ... questa struttura resta elastica, andrebbe usato il 5% anche nella TH (come per il PO).
- La risposta resta abbastanza in campo lineare \rightarrow bassa dispersione sulle TH

Edificio esistente Modello a fibre Direzione Y

Edificio esistente Modello a fibre Direzione Y

Telaio Nudo

- + Tamponature
- + Piano Terra Nudo

Risultati dei diversi metodi di analisi nonlineare (TH, PO, MPA):

- Piano Terra Nudo \rightarrow compare un meccanismo di piano.
- I piani superiori subiscono deformazioni limitate. Tamponature lineari OK.
- Risposta altamente nonlineare \rightarrow alta dispersione nei risultati TH

ULTERIORI ANALISI DINAMICHE NONLINEARI SU EDIFICIO BONEFRO

> INSERIRE QUI LAVORO NICOLA

- Edificio di Bonefro
- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Profilo terreno

- SP: Poorly graded sand; gravely sand
- SM: Silty sand; sand-silt mixtures
- OL: Organic silt; organic silty clays of low plasticity

Pila: sezione a fibre

Concrete: Kent-Scott-Park Model

Monotonic Pushover (Single Column on Fixed Base)

Fiber Discretization of Column Cross-section

Steel: Bilinear Model

Cyclic Pushover (Single Column on Fixed Base)

Pila: modello sezione con ripresa ferri

Professor Priestley, UCSD 1991

Pila: modello sezione con ripresa ferri

diapositiva gentilmente fornita dal Prof. J. Conte, UC San Diego, USA

Fondazioni a pali

Spalle: Giunto di espansione

Testa pila: Giunto di espansione

Modelli suolo 1

Soil: pressure-dependent, multi-surface, non-associative plasticity model (for gravel, sand, and silt), incorporating liquefaction effects

Modelli suolo 1

Sample Undrained Sand Response (medium dense)

Modelli suolo 2

Soil Material: Pressure-Independent Model multi-surface, associative plasticity model (for clay and silt)

Modelli suolo 2

Sample Clay Response

Dati terreno

Dati terreno

Soil Type	Description	Average	Unit	Relative	Friction	Cohesion	Gmax (kPa) at
		$(N_1)_{60}$	weight	density	angle	(kPa)	80 kPa mean
			(t/m^3)		(degrees)		confinement
SP	Dense to very dense, fine to medium grained sand	50	2.1	90	45	0	1.2e5
SP/SM	Medium, fine to medium grained sand	20	1.9	50	35	0	0.6e5
OL/SM	Organic silt, silty sand	7	1.9		0	35	0.6e5
CL	Very stiff clay	20	1.8		0	100	1.e5
OL	Organic silt	14	2.0		0	70	1.0e5
Abutment fill	Compact medium sand		1.9	50	35	25	0.6e5

Modi

Mode 1 (T₁ = 1.25 sec): Bridge structure in phase with soil media

Mode 2 (T₂ = 0.64 sec): Bridge structure out of phase with soil media

Interazione Suolo-Struttura

73

Interazione Suolo-Struttura

- Edificio di Bonefro
- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Modellazione Taglio (Per ponti ed edifici)

- Motivazione
- Cerniera plastica
- Plasticità distribuita

Modellazione Taglio (Per ponti ed edifici)

- Motivazione
- Cerniera plastica
- Plasticità distribuita

MODELLAZIONE TAGLIO

PONTE "IRREGOLARE" a Los Angeles

RTE 14/5 Intersection - SOUTH CONNECTOR

MODELLAZIONE TAGLIO

MODELLO A FIBRE: COGLIE IL COMPORTAMENTO M-N, E NON ANCHE IL TAGLIO

MODELLAZIONE ROTTURA A TAGLIO

MODELLAZIONE ROTTURA A TAGLIO

MODELLAZIONE ROTTURA A TAGLIO

Modellazione Taglio (Per ponti ed edifici)

- Motivazione
- Cerniera plastica
- Plasticità distribuita

MODELLAZIONE ROTTURA A TAGLIO METODO PER CERNIERA PLASTICA

- A partire dai legami costitutivi dei materiali si determina il legame Momento-Rotazione relativa delle cerniere plastiche
- Definizione del legame costitutivo Momento-Curvatura della sezione
- Definizione del comportamento plastico delle cerniere

Edificio di Bonefro

- Ponte di Humbolt Bay
- Modellazione Taglio (Per ponti ed edifici)
 - Motivazione
 - Cerniera plastica
 - Plasticità distribuita

PONTE HANSUI (GIAPPONE)

COLLASSO PER TAGLIO – TERREMOTO KOBE 1995 86

PONTE HANSUI

- Necessità di modellare la risposta nonlineare N-V-M
- Elemento in Forze di Timoshenko

Sezione a fibre: matrice di rigidezza completa calcolata in base alla risposta

$$\mathbf{k}(x) = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{12} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix}$$

Petrangeli, M., Pinto, P.E. and Ciampi, V. (1999). "Fiber element for cyclic bending and shear of R/C structures. I: theory", *ASCE Journal of Engineering Mechanics*, 125(9), 994-1001

PONTE HANSUI

Elemento in Forze di Timoshenko

Sezione a fibre semplificata

Marini, A., Spacone, E. (2006). Analysis of R/C Elements Including Shear Effects, *ACI Structure Journal*, in stampa

V ed M sono collegati dall'equilibrio puntuale, V=dM/dx. L'eventuale rottura a taglio impedisce al momento di aumentare!

Serve una legge $V-\gamma$

Modello Ponte

- Elementi telaio in forze (tipo Timoshenko)
- Sezioni a fibre per N-M
- Modello a taglio V- γ Equilibrio con M, V=dM/dx ("esatto")

Modello Ponte

• <u>Comportamento ciclico a taglio (con danno)</u>

PONTE HANSUI

Modello Ponte

Taratura modello taglio

Colonna provata in laboratorio (UC San Diego, USA): Xiao, Y., Priestley, N., Seible, F. (1993). "Steel jacket retrofit for enhancing shear strength of short rectangular reinforced concrete columns", *Report n. SSRP-92/07, University of California, San Diego, Structural Systems Research Project.*

PONTE HANSUI

Modello Ponte

Modello Ponte

FLESSIONE E TAGLIO (SECONDO EC2)

PONTE HANSUI

Modello Ponte

PONTE HANSUI

Risultati Analisi Ponte (TH terremoto Kobe)

Risultati Analisi Ponte

CONCLUSIONI SUI TRE ESEMPI

- Effetturare delle analisi nonlineari è oggi possibile anche sui normali PC
- PUNTO CENTRALE: scelta di un modello accurato
- In molti si domandano il perché delle analisi di PO (e quindi approssimate) piuttosto che analisi TH
- Non esistono ancora confronti completi fra PO e TH tridimensionali, con confronto critico dei risultati
- La fase di verifiche non è ancora applicativa (da norma). O ci sono programmi che specificano il raggiungimento di tutti gli SL cercati (rotture a flessione, taglio, etc.) o il controllo diventa pesante
- Servono inoltre indicazioni sul come stabilire il raggiungimento di uno SL. Per esempio, il fatto che si formi (al target displacement) una singola cerniera plastica in una trave non è un problema, mentre un meccanismo di piano è sicuramente un fatto più serio.
- Alcune normative indicano l'interstory drift come misura di controllo (sicuramente più semplice, forse meno precisa)

- Edificio di Bonefro
- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Carichi:

Primo e secondo Livello: $G_k = 3 \ kN/m^2$ $Q_k = 2 \ kN/m^2$ Terzo Livello: $G_k = 6 \ kN/m^2$ $Q_k = 4 \ kN/m^2$

Materiali:

 $f_{ck} = 20 \ N/mm^2$

Sezione:

Travi e Colonne: b = 40 cm h = 30 cmWall: s = 30 cm

Step 0: Definizione del modello lineare ed analisi modale

Mode No	Period	TRAN-X		TRAN-Y		TRAN-Z		ROTN-Z	
	(sec)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
1	0.6742	65.12	65.12	10.11	10.11	0.00	0.00	10.69	10.69
2	0.5977	20.39	85.51	33.24	43.35	0.00	0.00	34.18	44.87
3	0.1747	2.15	87.66	3.50	46.85	0.00	0.00	3.86	48.73
4	0.1571	9.28	96.94	0.59	47.44	0.00	0.00	0.94	49.67
5	0.1036	0.00	96.94	40.71	88.15	0.01	0.01	34.81	84.48

Step 1: Selezione delle registrazioni spettrocompatibili http://esse1

http://esse1.mi.ingv.it/

🗱 INGV - Istituto Nazionale di Geofisica e Vulcanologia

I dati online della pericolosità sismica in Italia

Mappe dinamiche
Mappe interattive della pericolosità sismica (WebGis)
Interactive Maps of Seismic Hazard (WebGis)
Interactive Maps of Seismic Hazard (WebGis)
Accelerazioni spettrali per varie probabilità di eccedenza in 50 anni
Morme Tecniche per le Costruzioni
DM 14/01/2008 - Allegato A

Step 1: Selezione delle registrazioni spettrocompatibili Probabilità di Eccedenza 50% in 50 anni

104

Step 0: Selezione delle registrazioni spettrocompatibili

Selezione da Disaggregazione della Pericolosità Sismica (Probabilità di Eccedenza 50% in 50 anni):

 $5.5 \le M_w \le 6.5$ $0 \le d_{ep} \le 30 \text{ km}$

Step 0: Selezione delle registrazioni spettro-
compatibili $5.5 \le M_w \le 6.5$

-											
Distanz	Disaggregazione del valore di a(g) con probabilita' di eccedenza del 50% in 50 anni (Coordinate del punto lat: 42.084, lon: 13.9618, ID: 27646)										
a in km		Magnitudo									
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.000	9.320	18.600	11.800	6.440	3.120	1.350	0.443	0.000	0.000	0.000
10-20	0.000	2.310	6.830	7.040	5.840	3.910	2.000	0.784	0.000	0.000	0.000
20-30	0.000	0.211	1.300	2.260	2.720	2.470	1.590	0.770	0.000	0.000	0.000
30-40	0.000	0.001	0.114	0.600	1.070	1.280	1.070	0.619	0.000	0.000	0.000
40-50	0.000	0.000	0.001	0.092	0.372	0.594	0.646	0.435	0.000	0.000	0.000
50-60	0.000	0.000	0.000	0.005	0.112	0.266	0.358	0.278	0.000	0.000	0.000
60-70	0.000	0.000	0.000	0.000	0.026	0.123	0.208	0.184	0.000	0.000	0.000
70-80	0.000	0.000	0.000	0.000	0.004	0.044	0.100	0.100	0.000	0.000	0.000
80-90	0.000	0.000	0.000	0.000	0.001	0.015	0.056	0.062	0.000	0.000	0.000
90-100	0.000	0.000	0.000	0.000	0.000	0.004	0.030	0.038	0.000	0.000	0.000

Selezione da Disaggregazione della Pericolosità Sismica (Probabilità di Eccedenza 50% in 50 anni)

 $0 \le d_{on} \le 30 \text{ km}$

Step 0: Selezione delle registrazioni spettrocompatibili

File Database Output About References								
REXEL v 3.3 (beta) Computer aided code-based real record selection for seismic analysis of structures (c) lunio lervolino, Carmine Galasso and Eugenio Chioccarelli, 2008-2011 Dipartimento di Ingegneria Strutturale, Università degli Studi di Napoli Federico II, Naples, Italy.								
1. Target Spectrum 3. Spectrum match	ing							
talian Building Code 2008	10							
ag [g] 0.17 Upper tolerance [%]	30							
Longitude [*] 13.93 0.8 - T1 [s]	0.15							
Latitude [*] 42.049	2							
Map U.6 -								
Site class EC8 A V 0.4 -	unds							
Topographic category T1 V 4. Analysis options								
Nominal life 0.2 - Scaled records (PGAnomalized records) s	earch)							
Functional type								
Limit state SIVC O 0.5 1 1.5 2 (Returns only the first com	bination found)							
Horizontal Vertical Build code spectrum User-defined spectrum								
Disaggregation for (Italian sites only) Sa(T =) Look at disaggregation ID conditional hazard								
- 2. Preliminary database search								
Based on M, R M minimum 6 M maximum 7 recorder	IL							
R minimum [km] 0 R maximum [km] 30 evente:	its							
T [s] 1 Epsilon minimum -3 Epsilon maximum 3 3 componer	ıts							
Database European Strong-motion Data 👻								
Site class Same as target spectrum V Check database Preliminary plot NEW SEARCH	EXIT							

lervolino I., Galasso C., Cosenza E., REXEL: computer aided record selection for codebased seismic structural analysis, Bull Earthquake Eng (2010) 8:339–362

Step 0: Selezione delle registrazioni spettrocompatibili

Step 0: Selezione delle registrazioni spettrocompatibili

Definizione dello spettro di risposta elastico NTC2008 (target spectrum) in funzione del sito selezionato

Step 0: Selezione delle registrazioni spettrocompatibili

LO

Image: Next EL v 3.3 (beta) File Database Output About References Image: Next EL v 3.3 Computer aided code-based real record selection Computer aided code-based real record selection Image: Next EL v 3.3 Computer aided code-based real record selection Computer aided code-based real record selection Image: Next EL v 3.3 Computer aided code-based real record selection Computer aided code-based real record selection Image: Next EL v 3.3 Computer aided code-based real record selection Computer aided code-based real record selection Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Next EL v 3.4 Image: Nex	b (beta) n for seismic analysis of genio Chioccarelli, 200 3tudi di Napoli Federico II, ponse spectrum nt, T _R = 475 years, § = 5 % 3 4 3 4	of structures D8-2011 Naples, Italy. 3. Spectrum matching Lower tolerance [%] 11 Upper tolerance [%] 30 T1 [s] 0.1 T2 [s] 2 Plot spectral bounds 4. Analysis options Scaled records (PGAnomalized records' search) I'm feeling lucky (PGAnomalized records' search) I'm feeling lucky (PGAnomalized records' search) Set size Individual record St size	Deter della per e selez del n recor carat conte datat	minazione coppia M, ffettuare la ione e veri umero di ds con tali teristiche nuti nel pase	, fica
Disaggregation for (Italian sites only) Sa(T = Y Look at disaggregation 2. Preliminary database Based on M, R Sa(T = 0.5) (PGA), M and R Sa(T = 0.5) (PGA), M and Epsilon Sa(T = 0.5) (PGA), M and Epsilon Sa(T = 0.5) (PGA), M and Epsilon Sa(T = 0.5) (PGA), M and Epsilon R minimum [Km] 6.5 T [5] 1 Epsilon minimum 30 T [5] 1 Epsilon minimum 3 Database European Strong-motion Data Y Check database	2. Preliminary Based on M, R T [s] 1 Database Europe	database search M minimum R minimum [km] Epsilon minimum ean Strong-motion Data	5.5 M maximum 0 R maximum [kr -3 Epsilon maxim	6.5 records: n] 30 events:	2x 65 29
	Sile class Same a	as target spectrum	Check data	pase Prel	minary plot

Step 0: Selezione delle registrazioni spettrocompatibili

NTC2008; 3.2.3.6 Impiego di accelerogrammi

L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli $0,15s \div 2,0s \in 0,15s \div 2T$, in cui *T* è il periodo fondamentale di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi

 $T_{1} = 0.67s$ $2T_{1} = 1.34s$ $\max \{ 0.15s \div 2.0s; 0.15s \div 2.0T_{1} \}$ $\max \{ 0.15s \div 2.0s; 0.15s \div 1.34s \} = 0.15s \div 2.0s$

Step 0: Selezione delle registrazioni spettrocompatibili

Definizione dei parametri di coerenza spettrale e selezione delle opzioni di analisi (registrazioni NON scalate; 2 componenti)

Wavefor m ID	Earthquak e ID	Station ID	Earthquake Name	Date	Mw	Fault Mechanism	Epicentral Distance [km]	PGA_X [m/s^2]	PGA_Y [m/s^2]	EC8 Site class
368	175	ST143	Lazio Abruzzo	07/05/1984	5.9	normal	22	0.628	0.6706	0.2564
7142	2309	ST539	Bingol	01/05/2003	6.3	strike slip	14	5.0514	2.9178	4.427
			South							
6349	2142	ST2558	Iceland	21/06/2000	6.4	strike slip	5	7.2947	8.218	4.1405
			(aftershock)							
55	34	ST20	Friuli	06/05/1976	6.5	thrust	23	3.4985	3.0968	2.6227
4674	1635	ST2486	South Iceland	17/06/2000	6.5	strike slip	5	3.1176	3.3109	2.6815
665	286	ST238	Umbria Marche	26/09/1997	6	normal	21	1.8296	1.5949	0.7392
			South							
6341	2142	ST2497	Iceland	21/06/2000	6.4	strike slip	20	0.5044	1.0258	0.393
			(aftershock)							
mean:					6.29		15.71	3.13	2.98	2.18

Step 2: Definizione del modello non lineare

Lista dei comandi per operare con il modello a fibre

Model > *Properties* > *Fiber Material Properties*

Inelastic Material Model 🛛 🔀						
Name :						
Material Type :	Concrete					
Hysteresis Model :	Kent & Park Model					
Hysteresis Model : Kent & Park Model						
fc' 20 1	N/mm^2 eco 0.002					
ecu 0.0048	Z 330 > ec1 = 0.8/Z + eco					
0	K Cancel Apply					

Step 2: Definizione dei materiali a comportamento non lineare

Il modello di Kent e Park (1973) e in seguito esteso da Scott et al. (1982) è definito come segue:

per
$$\varepsilon_c \le \varepsilon_0$$
 $\sigma_c = K f'_c \left[2 \left(\frac{\varepsilon_c}{\varepsilon_0} \right) - \left(\frac{\varepsilon_c}{\varepsilon_0} \right)^2 \right]$

per
$$\varepsilon_0 \le \varepsilon_c \le \varepsilon_u$$
 $\sigma_c = K f'_c \left[1 - Z \left(\varepsilon_c - \varepsilon_0 \right) \right] \ge 0.2 K f'_c$

$$\varepsilon_0 = 0.002 K$$

$$K = 1 + \frac{\rho_s f_{yh}}{f_c'}$$

$$Z = \frac{0.5}{\frac{3 + 0.29f'_c}{145f'_c - 1000} + 0.75\rho_s\sqrt{\frac{h'}{s_h}} - 0.002K}$$

Model > Properties > Fiber Material Properties¹¹⁹

Inelastic Material Model	×
Name : De Material Type : Steel Hysteresis Model : Menegotto-Pinto Model	
$\begin{array}{c c} & & & \\ &$	
Skeleton Curve fy 430 N/mm^2 Ro 20 E 200000 N/mm^2 a1 18.5 b 0.02 a2 0.15	
OK Cancel Apply	

Step 2: Definizione dei materiali a comportamento non lineare

Il legame costitutivo Menegotto-Pinto è espresso da questa relazione

$$\sigma^* = b \varepsilon^* + \frac{(1-b) \varepsilon^*}{\left(1 + \varepsilon^{*R}\right)^{1/R}}$$

dove:

$$\varepsilon^* = \frac{\varepsilon - \varepsilon_r}{\varepsilon_0 - \varepsilon_r}$$
$$\sigma^* = \frac{\sigma - \sigma_r}{\sigma_0 - \sigma_r}$$
$$R = R_0 - \frac{a_1 \xi}{a_2 + \xi}$$

Model > Properties > Fiber Material Properties¹²⁰

Step 3: Definizione della geometria delle sezioni a fibre

Fiber Division of Section	×
Name : P 30x40 Section Name : 2: P 30x40 國 國 國	Fiber Material Property Type 1 ksp Type 2 mp Type 3 ksp Type 6 ksp
	Create Fiber Create Rebar
	Material ID : Type2 Center Point(y, z) : -120,170 mm Area : P12 • DB C User
	Rebar Number Area (mm^2)
	1 P12 4 452.0000 2 Total 4 452.0000 3 E
	Create Delete Undo Redo Apply OK Close

Model > Properties > Fiber Division of Section

Step 4: Definizione e assegnazione delle a fibre

Model > Properties > Define Inel Hinge Properties

Model > *Properties* > Inelastic Hinge

dollo sozioni	Name : P 30x40						
	Description : Yield Strength(Surface) Calculation Method Image: Constraint of the strength of the strengt of the strength of the strength of the strength of the strength o						
fine Inelastic	Type Definition Interaction Type)n					
Assign Inelastic Hinges	Material Member						
Assign Inelastic Hinges 🛛 💌 📖	O SRC(filled) O Beam O Column	C Brace					
Option • Add / Replace C Delete	C SRC(encased) C User Defined Code : AISC Section	01					
Element Type	Component Properties	<u> </u>					
Inelastic Hinge Property	Component No. of Sections Hysteresis Model						
D 20v40	Fx 4 Kinematic Hardening Prop	perties					
	Fy 3 Kinematic Hardening Prop	perties					
Material :	Fz 3 Kinematic Hardening Prop	perties,					
Member Type :	Mix 3 Kinematic Hardening Prop	berties					
Element Position :	Image: Margin Margin Image: Margin Margin Image: Margin Margin	perties					
Section :	Yield Surface Properties Fiber Name : P 30x40						

Add/Modify Inelastic Hinge Properties

X

MIDASGEN

Step 5: Definizione dei casi di carico Time History

Si definisce un caso di carico per ogni registrazione (non per ciascuna componente!!!!)

Load > Time History Analysis Data > Time History Load Cases

Add/Modify Time History Load Cases 🛛 🛛 🔀								
General Name : TH 1 Description :								
Analysis Type Analysis Method Time History Type C Linear C Modal Transient Image: One of the temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperature Image: One of temperat								
End Time : 30 sec Time Increment : 0.01 sec Step Number Increment for Output : 1 sec								
Order in Sequential Loading								
Subsequent to Coad Case ST : TOT								
 Initial Element Forces(Table) 								
Cumulate D/V/A Results 📝 Keep Final Step Loads Constant								
Damping								
Damping Method : Mass & Stiffness Proportional								
Damping Type :								
C Divest Specification								
Calculate from Model Damping : 0.29684339527 0.00302269076								
Coefficients Calculation								
Mode 1 Mode 2								
C Frequency [Hz] : 0								
Period [sec] : 0.67 0.6								
Damping Ratio : 0.03 0.03								
Show Damping Ratio								
Time Integration Parameters Newmark Method : Gamma O.5 Beta O.25 October Constant Acceleration C User Input								
Nonlinear Analysis Control Parameters								
Perform Iteration Iteration Controls								
Damping Matrix Update : C No C Yes								
OK Cancel Apply								

Step 5: Inserimento delle funzioni time-history

Step 5: Inserimento delle funzioni time-history

Load > Time History Analysis Data > Time Forcing Functions

Step 6: Definizione delle componenti che costituiscono la registrazione

Load > Time History Analysis Data> Ground Acceleration

Time History Analysis	Data
Ground Acceleration	▼
Time History Load C	ase Name
TH_1	▼
-Function for Directio	on-X
Function Name :	TH_1X 💌
Scale Factor :	1
Arrival Time :	0 sec
Function for Direction	on-Y
Function Name :	TH_1Y ▼
Scale Factor :	1
Arrival Time :	0 sec
-Function for Directio	on-Z
Function Name :	NONE 💌
Scale Factor :	1
Arrival Time :	0 sec
Angle of Horizontal G	round Acc.
0	🛨 [dea]
Case Name 4	Angle of Acc.
TH_1 ()
Operations	
Add Mo	dify Delete
	⊆lose

Step 7: Analisi ed interpretazione dei risultati

LC	Combinations Ctrl+F9			
		•		
	Deformations	•		
	Eorces	•		
	Stresses	•		
	User Defined Diagram	•		
	Heat of Hydration Analysis	•		
<u>च</u>	Beam <u>D</u> etail Analysis			
<u> [0</u>	Element Detail Results			
]\$→	Local Direction Force Sum			
Ħ	Displacement Participation Factor			
	<u>V</u> ibration Mode Shapes			
	Modal Damping Ratio based on Group Damping			
<u>*</u>	Buckling Mode Shapes			
№.	Nodal Results of RS			
	Time History Results	• 74	Displ/Vel/Accel	Lista dei comandi
	Stage/Step History Graph	裐	Eorce(Beam/Truss/General Link)	
	Column Shortening Graph for C.S	-*	Force Diagram(Beam/Truss/General Link)	interpretare l'analis
		計	<u>S</u> tress(Beam/Truss)	non lineare
	Story Shear Force Ratio	2	Inelastic Hinge Status	
₩	Unknown Load Factor		Analysis Result of Fiber Section	
	Tendon Time-dependent Loss Graph	tim	Time Linkews Grank	
	Result Tables		Story Graph	
B		102 101	Jury Graphini	
-	Message Window	- <u>No</u>	Hine History Texture	

per si dinamica

Tree Menu	ąχ	4 🚺 Model View		⊳ ×
Time History Displ/Vel/Accel Function Time History Load Case Name Time Function Th_1 Time Function Th_1X Time Functi				midas Gen POST-PROCESSOR TH-DISPL/VEL/ACCEL RESULTANT X-DIR= 1.699E-002 NODE= 29 Y-DIR= -7.666E-003 NODE= 5 Z-DIR= 1.039E-003 NODE= 29 COMB.= 1.710E-002 NODE= 25 SCALE FACTOR= 4.502E+001 TH: TH_1 Time Step : 5.55 MAX : 25 MIN : 1 FILE: SLU_mult UNIT: m DATE: 09/13/2012
Start Time 0.01 sec			HCCRSSRILLY COMPLETED	4 A
End Time J 25 Sec		TOTAL SOLUTION TIME	: 104.03 [SEC]	L_distrib
Increment 0.01 sec				_
Set Default Time				~
[]	~	Command	Message Analysis Message /	•

Eile Edit View Model Load Analysis Results	<u>D</u> esign M <u>o</u> de Que	ery <u>T</u> ools <u>W</u> ii	ndow <u>H</u> elp			12 12		
FrequentI Grid/Snap UCS/GCS View Con Activation	n 🚦 Wizard Node E	Element Proper	ty BC/Mass Stage Lo	ad Building Mesh Se	ttlement Result Query			
📲 🖊 🎢 🧱 🕼 😢 🖻 🎲 🖗 🖵 🟸 🕮 🎙	🔹 🕆 🏠 🛏 🔓	(🖈 🗖 🖗	🛩 🖅 💋 🍃 🗱 🛽 🕹	a 🐓 🎦 🖪 🏺 🗑	->			
	— · . †		에 다 다 소 요	Ŷ	• 💠		a 🔐 😘	
Tree Menu	Model View	G Story	Shear(by Step)					
Time History Graph Story Graph Time History Text								
Node Result	Spost	amei	nti nodal	li 💦	36			
Result Type Selection			36		38		R Sof	
C Acceleration				32		23		
C Time Step			X=0	25			34	
C Maximum & Minimum			10 Y=0 Z=9	24	34			
		Tout Edi	tor ETimoldists					
Output Time Step	ET MIDAS		tor - Enimernista	rykesuttj				
From 0.01 To 25	🍄 File E	Edit View	Window Help					
At every 1 steps	🗋 🖆	8 🖨 🗋	. 🖽 🐰 🛍 🖺] 🗏 🖊 🎢	' ≌ ≅ ≣	1 % % %	a b A	• 🕫 🗣 🔟 E
Node Selection	00001							
• User Input	00002	** mida:	s Gen Time-his	story Output	Data **			
25	00003							
C Selected Nodes in View	00004							
Reference Point	00006	MODE =	25 Displac	ement Histor	י דותוד	SVSTEM • m	kN sec	
 Ground 	00007				-	ылы н ш,	MA, 500	
C Add Ground Motion M	lessage 00008							
C Another Node	R. 00009	TIME	DX	DY	DZ	RX	RY	RZ
Time History Case	R 00010					1 171 - 000	4 500- 010	
TH_1 >	> 00012	0.010	-3.3290-00/ -1 644e-006	2.3238-007 1 223e-006	-3.3940-009 -1 951e-008	1.1/10-009 4 678e-009	-4.3390-010 9 560e-000	-9.9900-010 -1 131e-008
For Help, press E1	00013	0.020	-4.337e-006	3.295e-006	-5.213e-008	1.119e-008	4.237e-008	-5.570e-008
rui naip, prass F1	00014	0 040	0 225- 002	2 201A 002	0 5000 000	1 200- 000	0 0020 000	1 710- 007

- Edificio di Bonefro
- Ponte di Humbolt Bay
- > Modellazione Taglio (Per ponti ed edifici)
- Esempio di modellazione ed analisi in MidasGen
- E-ELT Telescope

Introduzione

Questo progetto concettuale rivoluzionario, chiamato E-ELT, ovvero European Extremely Large Telescope, sarà il più grande telescopio ottico/vicino-infrarosso del mondo con uno specchio primario del diametro di 42 m.

E-ELT Telescope, www.eso.org ESO/L. Calçada

L'obiettivo di questo lavoro era la progettazione di un sofisticatissimo sistema di isolamento tridimensionale che fosse in grado da un lato di garantire la rigidezza delle fondazioni durante l'operatività del telescopio e dall'altro di ridurre di almeno il 50% le accelerazioni negli specchi nel caso di evento sismico. Lo sviluppo dei dispositivi è stato fatto in collaborazione con Alga Spa. ¹³⁶

Modellazione strutturale

Sono stati realizzati diversi modelli utilizzando il software Midas Gen per valutare le accelerazioni per diverse configurazioni del telescopio.

Modelli numerici del telescopio sviluppati con Midas Gen

I modelli consistono in

- 31773 elementi trave
- 4576 elementi shells
- 6062 equazioni lineari di vincolo utilizzate per connettere gli specchi alla struttura (schematizzano la rigidezza degli attuatori)

• Tipologia di analisi

Il sistema è stato studiato tramite analisi non lineari con integrazione.

Selezione dell'input sismico

Si è scelto in questo caso di applicare contemporaneamente triplette di accelerogrammi artificiali alla base del modello.

Sarebbe stato preferibile utilizzare accelerogrammi naturali ma poiché l'intensità dell'accelerazione attesa al suolo nel sito in esame è molto elevata (PGA = 0.72g, ASDEA 2010) non è stato possibile reperire accelerogrammi naturali spettrocompatibili senza dover scalare eccessivamente le accelerazioni.

Smorzamento

Per quanto riguarda lo smorzamento si è utilizzata la formulazione classica della matrice di smorzamento C di Rayleigh che assume lo smorzamento proporzionale alla massa e alla rigidezza in accordo con la formula seguente:

 $\mathbf{C} = a_0 \mathbf{M} + a_1 \mathbf{K}$

I coefficienti a_0 e a_1 possono essere calcolati assegnando lo smorzamento $\xi_m \in \xi_n$ a due specifiche frequenze $\omega_m \in \omega_n$.

$$\begin{cases} a_0 \\ a_1 \end{cases} = 2 \frac{\omega_m \omega_n}{\omega_n^2 - \omega_m^2} \begin{bmatrix} \omega_n & -\omega_m \\ -1 / \omega_n & 1 / \omega_m \end{bmatrix} \begin{cases} \xi_m \\ \xi_n \end{cases}$$

Smorzamento

Le due frequenze utilizzate per definire ξ devono considerare tutti i modi di vibrazione che hanno masse partecipanti significative per la risposta del telescopio.

L'analisi modale del telescopio a base fissa mostra che per eccitare l'85% della massa totale servono più di 600 modi.

$$\begin{cases} a_0 \\ a_1 \end{cases} = 2 \frac{\omega_m \omega_n}{\omega_n^2 - \omega_m^2} \begin{bmatrix} \omega_n & -\omega_m \\ -1 / \omega_n & 1 / \omega_m \end{bmatrix} \begin{cases} \xi_m \\ \xi_n \end{cases}$$

Smorzamento

Nelle analisi non lineari si considera un valore dello smorzamento inferiore al convenzionale 5% usato nelle analisi lineari, tipicamente compreso tra lo 0% e il 2%. Questo perché parte della dissipazione è considerata direttamente nel modello.

Il range di frequenze da coprire è molto ampio, si è scelto di fissare lo smorzamento al 2% per frequenze pari a 2.7 e 10 Hz.

È importante valutare con attenzione se vi sono masse partecipanti importanti oltre i 10 Hz poiché verrebbero smorzate più di quanto richiesto riducendo artificialmente le accelerazioni di output. 141

Smorzamento

Sistema isolato - smorzamento

(a) Base fissa - 1° modo di vibrare (b) Sistema isolato – 1° modo di vibrare

La scelta delle frequenze per la soluzione isolata è molto più semplice poiché <u>l'isolamento governa il periodo proprio della struttura e il 99%</u> della massa orizzontale è associata a una frequenza pari a 0.42 Hz, mentre quella verticale ad una frequenza di 3.33 Hz

Taratura degli isolatori

Per modellare il comportamento è stato utilizzato l'elemento link non lineare chiamato: "*Hysteretic System*", che modella l'energia dissipata attraverso un comportamento isteretico.

Il modello numerico tarato riproduce fedelmente il comportamento sperimentale ciclico degli isolatori

Confronto tra il comportamento sperimentale e numerico dell'isolatore orizzontale e verticale

Comportamento ciclico degli isolatori

La valutazione critica del comportamento ciclico degli isolatori durante il sisma permette di valutare se vi sono degli isolatori sottoposti a forze di trazione che potrebbero generare un effetto di rocking incontrollabile ed estremamente pericoloso.

Risposta orizzontale nella direzione X-degli isolatori soggetti alla massima (isolatore N° 10) e minima (isolatore N° 47) forza assiale (configurazione a 0°gradi)

• Risultati

Le accelerazioni sia orizzontali che verticali sono state ridotte sostanzialmente grazie all'inserimento degli isolatori

